top of page

Coming soon...

I am actively seeking funding for my next research idea and career step.

The DynEndo project is currently under consideration for an ERC Starting Grant. More details will be revealed in due course, but a list of relevant references can be found below.

Watch this space!


  1. Cancer Fact Sheet. World Health Organization.

  2. Statement – Catastrophic impact of COVID-19 on cancer care. World Health Organization.

  3. Palmer, A. C. & Sorger, P. K. Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy. Cell 171, 1678-1691.e13 (2017).

  4. Nguyen, V.-N., Yan, Y., Zhao, J. & Yoon, J. Heavy-Atom-Free Photosensitizers: From Molecular Design to Applications in the Photodynamic Therapy of Cancer. Acc. Chem. Res. 54, 207–220 (2021).

  5. Allegra, A., Pioggia, G., Tonacci, A., Musolino, C. & Gangemi, S. Oxidative Stress and Photodynamic Therapy of Skin Cancers: Mechanisms, Challenges and Promising Developments. Antioxidants 9, 448 (2020).

  6. Dos Santos, A. F., De Almeida, D. R. Q., Terra, L. F., Baptista, M. S. & Labriola, L. Photodynamic therapy in cancer treatment - an update review. J. Cancer Metastasis Treat. 2019, (2019).

  7. van Straten, D., Mashayekhi, V., de Bruijn, H., Oliveira, S. & Robinson, D. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel). 9, 19 (2017).

  8. Yanovsky, R. L., Bartenstein, D. W., Rogers, G. S., Isakoff, S. J. & Chen, S. T. Photodynamic therapy for solid tumors: A review of the literature. Photodermatol. Photoimmunol. Photomed. 35, 295–303 (2019).

  9. Koshi, E., Mohan, A., Rajesh, S. & Philip, K. Antimicrobial photodynamic therapy: An overview. J. Indian Soc. Periodontol. 15, 323 (2011).

  10. Donnelly, R. F., McCarron, P. A. & Tunney, M. M. Antifungal photodynamic therapy. Microbiol. Res. 163, 1–12 (2008).

  11. Svyatchenko, V. A., Nikonov, S. D., Mayorov, A. P., Gelfond, M. L. & Loktev, V. B. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagnosis Photodyn. Ther. 33, 102112 (2021).

  12. Zhang, Q.-Y., Wang, F.-X., Jia, K.-K. & Kong, L.-D. Natural Product Interventions for Chemotherapy and Radiotherapy-Induced Side Effects. Front. Pharmacol. 9, (2018).

  13. Larue, L., et al.Fighting Hypoxia to Improve PDT. Pharmaceuticals 12, 163 (2019).

  14. Callaghan, S. & Senge, M. O. The good, the bad, and the ugly – controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochem. Photobiol. Sci. 17, 1490–1514 (2018).

  15. DeRosa, M. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234, 351–371 (2002), DOI: 10.1016/S0010-8545(02)00034-6.

  16. Aubry, J.-M., Pierlot, C., Rigaudy, J. & Schmidt, R. Reversible Binding of Oxygen to Aromatic Compounds. Acc. Chem. Res. 36, 668–675 (2003).

  17. Turro, N. J., Chow, M.-F. & Rigaudy, J. Thermolysis of anthracene endoperoxides. Concerted vs. diradical mechanisms. Microscopic reversibility in endothermic chemiluminescent reactions. J. Am. Chem. Soc. 101, 1300–1302 (1979).

  18. Fidder, H., Lauer, A., Freyer, W., Koeppe, B. & Heyne, K. Photochemistry of Anthracene-9,10-endoperoxide. J. Phys. Chem. A 113, 6289–6296 (2009).

  19. Lauer, A., Dobryakov, A. L., Kovalenko, S. A., Fidder, H. & Heyne, K. Dual photochemistry of anthracene-9,10-endoperoxide studied by femtosecond spectroscopy. Phys. Chem. Chem. Phys. 13, 8723 (2011).

  20. Schirmeister, T. et al., Cytotoxicity of Endoperoxides from the Caribbean Sponge Plakortis halichondrioides towards Sensitive and Multidrug-Resistant Leukemia Cells: Acids vs. Esters Activity Evaluation. Mar. Drugs 15, 63 (2017).

  21. Huang, T. et al., De Novo Design of Polymeric Carrier to Photothermally Release Singlet Oxygen for Hypoxic Tumor Treatment. Research 2019, 1–11 (2019).

  22. Dembitsky, V. M., Ermolenko, E., Savidov, N., Gloriozova, T. A. & Poroikov, V. V. Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity. Molecules 26, 686 (2021).

  23. Treating malaria. World Health Organization.

  24. Q&A on artemisinin resistance. World Health Organization.

  25. Bhaw-Luximon, A. & Jhurry, D. Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectives. Cancer Chemother. Pharmacol. 79, 451–466 (2017).

  26. Zhang, Y. et al., Antitumor Research on Artemisinin and Its Bioactive Derivatives. Nat. Products Bioprospect. 8, 303–319 (2018).

  27. O’Neill, P. M., Barton, V. E. & Ward, S. A. The Molecular Mechanism of Action of Artemisinin—The Debate Continues. Molecules 15, 1705–1721 (2010).

  28. Antoine, T. et al., Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J. Antimicrob. Chemother. 69, 1005–1016 (2014).

  29. Ayan, S. et al., Proof-of-principle for two-stage photodynamic therapy: hypoxia triggered release of singlet oxygen. Chem. Commun. 56, 14793–14796 (2020).

  30. Rodrigues, N. d. N. & Stavros, V. G. From Fundamental Science to Product: A Bottom-up Approach to Sunscreen Development. Sci. Prog. 101, 8–31 (2018).

  31. Abiola, T. T. et al., New Generation UV-A Filters: Understanding Their Photodynamics on a Human Skin Mimic. J. Phys. Chem. Lett. 12, 337–344 (2021).

  32. Turro, N. J. & Chow, M. F. Mechanism of thermolysis of endoperoxides of aromatic compounds. Activation parameters, magnetic field, and magnetic isotope effects. J. Am. Chem. Soc. 103, 7218–7224 (1981).

  33. Hao, G., Xu, Z. P. & Li, L. Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC Adv. 8, 22182–22192 (2018).

  34. Asadirad, A. M., Erno, Z. & Branda, N. R. Photothermal release of singlet oxygen from gold nanoparticles. Chem. Commun. 49, 5639 (2013).

  35. Yuan, Z. et al., Near-infrared light triggered photothermal and photodynamic therapy with an oxygen-shuttle endoperoxide of anthracene against tumor hypoxia. Polym. Chem. 9, 2124–2133 (2018).

  36. Kolemen, S. et al., Remote-Controlled Release of Singlet Oxygen by the Plasmonic Heating of Endoperoxide-Modified Gold Nanorods: Towards a Paradigm Change in Photodynamic Therapy. Angew. Chemie Int. Ed. 55, 3606–3610 (2016).

  37. Egolf, P. W. et al., Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction. J. Appl. Phys. 120, 064304 (2016).

  38. Goswami, L., Paul, S., Kotammagari, T. K. & Bhattacharya, A. K. Synthesis of artemisinin derived glycoconjugates inspired by click chemistry. New J. Chem. 43, 4017–4021 (2019).

  39. Abiola, T. T., Whittock, A. L. & Stavros, V. G. Unravelling the Photoprotective Mechanisms of Nature-Inspired Ultraviolet Filters Using Ultrafast Spectroscopy. Molecules 25, 3945 (2020).

  40. Zewail, A. H. Femtochemistry: Atomic-Scale Dynamics of the Chemical BondJ. Phys. Chem. A 104, 5660–5694 (2000).

  41. Ma, H., Wan, C. & Zewail, A. H. Ultrafast T-Jump in Water: Studies of Conformation and Reaction Dynamics at the Thermal Limit. J. Am. Chem. Soc. 128, 6338–6340 (2006).

  42. Hong, X., Chen, S. & Dlott, D. D. Ultrafast Mode-Specific Intermolecular Vibrational Energy Transfer to Liquid Nitromethane. J. Phys. Chem. 99, 9102–9109 (1995).

  43. Bian, H., Li, J., Wen, X. & Zheng, J. Mode-specific intermolecular vibrational energy transfer. I. Phenyl selenocyanate and deuterated chloroform mixture. J. Chem. Phys. 132, 184505 (2010).

  44. Woutersen, S. & Bakker, H. J. Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402, 507–509 (1999).

  45. Greetham, G. M. et al., Time-Resolved Temperature-Jump Infrared Spectroscopy at a High Repetition Rate. Appl. Spectrosc. 74, 720–727 (2020).

  46. Petersen, P. B. & Tokmakoff, A. Source for ultrafast continuum infrared and terahertz radiation. Opt. Lett. 35, 1962 (2010).

  47. Baldeck, P. L., Ho, P. P. & Alfano, R. R. Effects of self, induced and cross phase modulations on the generation of picosecond and femtosecond white light supercontinua. Rev. Phys. Appliquée 22, 1677–1694 (1987).

  48. Roberts, G. M., Marroux, H. J. B., Grubb, M. P., Ashfold, M. N. R. & Orr-Ewing, A. J. On the Participation of Photoinduced N–H Bond Fission in Aqueous Adenine at 266 and 220 nm: A Combined Ultrafast Transient Electronic and Vibrational Absorption Spectroscopy Study. J. Phys. Chem. A 118, 11211–11225 (2014).

  49. Baker, L. A. & Stavros, V. G. Observing and Understanding the Ultrafast Photochemistry in Small Molecules: Applications to Sunscreens. Sci. Prog. 99, 282–311 (2016).

  50. Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

  51. Jónsson, H., Mills, G. & Jacobsen, K. W. Nudged elastic band method for finding minimum energy paths of transitions. in Classical and Quantum Dynamics in Condensed Phase Simulations, pp. 385–404 (WORLD SCIENTIFIC, 1998). 

  52. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

  53. Westermayr, J., Gastegger, M. & Marquetand, P. Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics. J. Phys. Chem. Lett. 11, 3828–3834 (2020).

  54. SchNarc Repository. GitHub.

  55. Molpro Quantum Chemistry Software

  56. Martins, S., Farinha, J. P. S., Baleizão, C. & Berberan-Santos, M. N. Controlled release of singlet oxygen using diphenylanthracene functionalized polymer nanoparticles. Chem. Commun. 50, 3317 (2014).

  57. Jung, M. Synthesis and cytotoxicity of novel artemisinin analogs. Bioorg. Med. Chem. Lett. 7, 1091–1094 (1997).

  58. Rudrapal, M. & Chetia, D. Endoperoxide antimalarials: development, structural diversity and pharmacodynamic aspects with reference to 1,2,4-trioxane-based structural scaffold. Drug Des. Devel. Ther. 10, 3575–3590 (2016).

  59. Vil’, V., Yaremenko, I., Ilovaisky, A. & Terent’ev, A. Synthetic Strategies for Peroxide Ring Construction in Artemisinin. Molecules 22, 117 (2017).

  60. Suit, H. D. & Shwayder, M. Hyperthermia: Potential as an anti-tumor agent. Cancer 34, 122–129 (1974).

  61. Skitzki, J. J., Repasky, E. A. & Evans, S. S. Hyperthermia as an immunotherapy strategy for cancer. Curr. Opin. Investig. Drugs 10, 550–8 (2009).

  62. Filatov, M. A. & Senge, M. O. Molecular devices based on reversible singlet oxygen binding in optical and photomedical applications. Mol. Syst. Des. Eng. 1, 258–272 (2016).

  63. Crucho, C. I. C. et al.TADF Dye-Loaded Nanoparticles for Fluorescence Live-Cell Imaging. Front. Chem. 8, (2020).

  64. Bernardes, N. et al., Azurin interaction with the lipid raft components ganglioside GM-1 and caveolin-1 increases membrane fluidity and sensitivity to anti-cancer drugs. Cell Cycle 17, 1649–1666 (2018).

  65. Bernardes, N. et al., Modulation of membrane properties of lung cancer cells by azurin enhances the sensitivity to EGFR-targeted therapy and decreased β1 integrin-mediated adhesion. Cell Cycle 15, 1415–1424 (2016).

  66. Santos, C. I. M. et al., Novel hybrids based on graphene quantum dots covalently linked to glycol corroles for multiphoton bioimaging. Carbon N. Y. 166, 164–174 (2020).

  67. Maclean, K. H., Dorsey, F. C., Cleveland, J. L. & Kastan, M. B. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J. Clin. Invest. 118, 79–88 (2008).

  68. Jiang, Q. et al., Mitochondria-Targeting Immunogenic Cell Death Inducer Improves the Adoptive T-Cell Therapy Against Solid Tumor. Front. Oncol. 9, (2019).

  69. Tsubone, T. M. et al., Enhanced efficiency of cell death by lysosome-specific photodamage. Sci. Rep. 7, 6734 (2017).

  70. Murotomi, K., Umeno, A., Sugino, S. & Yoshida, Y. Quantitative kinetics of intracellular singlet oxygen generation using a fluorescence probe. Sci. Rep. 10, 10616 (2020).

  71. You, Y. et al., Porphyrin-grafted Lipid Microbubbles for the Enhanced Efficacy of Photodynamic Therapy in Prostate Cancer through Ultrasound-controlled In Situ Accumulation. Theranostics 8, 1665–1677 (2018).

  72. Kamoshima, Y., Terasaka, S., Kuroda, S. & Iwasaki, Y. Morphological and histological changes of glioma cells immediately after 5-aminolevulinic acid mediated photodynamic therapy. Neurol. Res. 33, 739–746 (2011).

  73. Holt, E. L. et al., Insights into the photoprotection mechanism of the UV filter homosalate. Phys. Chem. Chem. Phys. 22, 15509–15519 (2020).

bottom of page